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SUMMARY  

The paper presents results of discriminant analysis for Kraft’s classes of trees. Kraft’s 
classification is based on a tree’s position in the stand’s social structure and its crown 
development and extent. Belonging to a given social class reflects the position of a tree 
in a stand, and through this, its growth potential. The aim of the analysis was to select 
variables which mostly determined the Kraft class of a tree and to construct discriminant 
functions which assign data well to Kraft’s classes. 

Key words: discriminant analysis, LDA, PCA, Scots pine 

1. Introduction 

There are many cases in which foresters classify trees. In the 19th century, Kraft 

(1884) (in Assmann, 1961) created what would become one of the most widely 

used tree classifications. This classification is based on a tree’s position in the 

stand’s social structure and its crown development and extent. Kraft recognized 

the following classes of trees:  

• predominant trees with exceptionally well-developed crowns 

• dominant trees, forming the main stand as a rule with relatively well-

developed crowns 

• low co-dominant trees; crown shape is still normal and hence the trees are 

similar to those in the second tree class in this respect, yet they are relatively 

weakly developed and restricted often already with the onset of degeneration 

The classes 1−3 are called the dominant stand. 
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• dominated trees, with crowns more or less dying back, restricted on all sides 

or on two sides, or with one-sided development  

• intermediate trees, essentially free of canopy cover with restricted 

lateral crown growth 

• partially overtopped crowns, the upper crown free, the lower crown 

under canopy cover 

• entirely overtopped trees  

• with crowns capable of growth 

• with dead crowns 

The classes 4−5 are called the suppressed stand. Belonging to a given social 

class reflects the position of a tree in a stand, and through this, its growth 

potential. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Kraft’s classes (1884 in Assmann 1961) 

The aim of the analysis is to choose the variables which mostly determined 

the Kraft’s class of a tree (1, 2, 3, 4a, 4b, 5a) and to construct discriminant 

functions which assign data well to Kraft’s classes. Knowledge about the 

position of a tree in the forest may help draw conclusions about the forest 

management in the past and apply these to the future.  
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In the past discriminant analysis has been applied to analyse measurements 

on trees, but in another context. For example, Sahunalu et al. (1994) carried out 

research on the relationship between soil and plants in Thailand’s dry 

dipterocarp forest. Wyant et al. (1986) studied the dependence between 

the percentage of fire damage to crowns and the mortality of trees in a Colorado 

pine and fir forest. Reitberger et al. (2008) used a discrimination method for 

tree recognition on 3D full waveform LIDAR data from the Bavarian Forest 

National Park. Niche differences in four species of Galium were quantified by 

using discriminant function analysis of site characteristics including biotic 

variables (Mann and Shugart 1984). Lewis and Rice (1990) estimated the risk of 

erosion on forest lands. Discriminant analysis was used to classify rain forest 

types in Costa Rica (Thessler et al., 2008). Discriminant analysis, probit 

analysis and logit analysis were compared for the prediction of individual 

overstory tree mortality in northern hardwood stands in Wisconsin (Monserud, 

1976). Blackard and Dean (1999) applied discriminant analysis in predicting 

forest cover types from cartographic variables. Here this statistical methodology 

is used to Kraft’s classification of the trees.   

2. Experimental material  

The experimental material included selected results for 200 pine-tree trunks 

derived from 8 stands. All stands from which the experimental test trees were 

derived grew on the fresh mixed coniferous forest sites situated in the Zielonka 

Experimental Forest District. Sample trees followed the methodology developed 

by Draudt. The same calendar growth period from 1989 to 1993 was adopted 

for each tree. The purpose of this assumption was to rule out the effect of 

additional factors such as site, climate and meteorology on the increment. Prior 

to felling their social class was established according to the criteria proposed by 

Kraft. In the presented study the following traits were measured:  

• age of sample trees (w), 

• tree height (h) measured in m  
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• 5-year increment in height (Zh5) in m  

• double bark thickness (K) – measured in cm at a height of 1.3 m from the base 

of the tree  

• breast height diameter inside bark (d1⋅3.) – its diameter measured in cm at the 

height of 1.3 m from the base of the tree  

• 5-year increment in breast height diameter (Zd5) in cm 

• tree basal area (g1.3) in m2 – the area of a circle with a diameter equal to 

the breast height diameter 

• 5-year basal area increment (Zg5) in m2 

• tree volume (V), i.e. section-based volume in m3; the stem is divided into 

sections of identical length (in this case 1 m) – the volume of each complete 

section is established as the volume of a cylinder with diameter measured at 

mid-length of a given section, while the volume of the last incomplete section 

is calculated using a formula for the volume of a cone; these calculated 

volumes of individual sections are summed 

• 5-year volume increment (Zv5)  

• breast height form factor (f1.3) equal to V/(g1.3*h) 

• volume growth intensity coefficient (i5) equal to Zv5/ g1.3 

• tree slenderness (s) defined as the ratio of height in m to breast height 

diameter in cm (h/ d1,3) 

Most of the analysed traits were determined for standing trees, although Zh5, 

V, Zv5, f1.3, i5 were measured on felled trees. 

3. Statistical methods 

The problem of classification arises when an investigator makes a number of 

measurements on an individual and wishes to classify the individual into one of 

a finite number of categories, but cannot do so directly from the measurements. 

For example when a tree has been felled and transported to a sawmill it is 

possible to measure some of the above variables but there is no information 

about the position of that tree in the stand social structure. We are interested in 
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finding some linear functions of several number of variables representing 

the features measured on a individual tree which are the best predictors of the 

assignment to groups.  

The method of discrimination analysis is widely described in Krzyśko 

(1990, 2000), Koronacki and Ćwik (2005) and Anderson (2003) and in many 

other books. The kind of analysis used in this paper is described in the new 

book by Krzyśko at al. (2008). Information on the practical use of 

STATISTICA is can be easily found in Stanisz (2007).  

We take into consideration 13 variables: w, h, Zh5, K, d1,3, Zg5, V, Zv5, f1.3, i5, 

s. A grouping variable ‘Kraft’ was adopted to discriminate the groups 1, 2, 3, 

4a, 4b and 5a. The calculations were performed using STATISTICA. 

We let ),...,,( 21 ′= iiniii XXXY  be the random sample from the i-th (i = 

1, ..., K) p-variate normally distributed population (Kraft’s group) from the set 

{ π1,…, πK} and n1+ n2+…+ nK = n. The maximum likelihood estimators of the 

mean value of predictors µµµµi and the variance-covariance matrix ΣΣΣΣi of πi has the 

form (respectively) 

∑= ij
i

i n
XX

1
   and    ∑ −−

−
= '))((

1

1
ijijijij

i
i n

XXXXS .  

From the whole training sample ),...,,( 21 ′′′′= nXYYX  we calcu- 

late ∑
−= iinn XX 1 , the variance between sample’s matrix 

'))(( XXXXB −−= ∑ iiin  and the variance inter sample’s matrix 

iin SW )1( −= ∑ .  

We are interested in finding the set of constant vectors {ai: i=1,…,K} which 

maximalizes the expression WaaBaa ′−′− )1()( KKn  on condition that 

ijjiKn δ=− − Waa'1)(  where a = (a1’,…,aK’ )’ is a matrix built on the ai’s and 

δij is a Kronecker’s delta (i.e. 1 if i=j  and 0 if i≠j). This criterion means that new 

variables (discriminant functions) ui = ai’x are uncorrelated, with variances 

equal to 1 for every i.  

The first discriminant function u1 is related to the first (i.e. the largest) 

eigenvalue λ1 of the matrix BW 11)1)(( −−−− KKn , the second is related to λ2 , 
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and so forth. The vectors ai are the eigenvectors related to the λi’s, where λ1 ≥ λ2 

≥ … ≥ λs > 0 are the solutions of the determinant equation 

0aWB =−−− −
iiKnK )))(1(( 1λ , for i = 1,…,s. 

In order to make scales of prior variables equal, the uk’s should be stan-

dardized in this manner )(...)( 111 ipijpkpiijkk xxaxxau −++−= for k = 1,…,s. 

The absolute values of the coefficients akr’s divided by the r-th root of the 

diagonal element of W1)( −− Kn  show the contribution of prior variables 

x1,…,xp to discrimination of groups by the k-th discriminant variable uk. 

In the classification process a discriminant variable uk is not useful if λk is 

not significantly different from zero (Krzyśko at al. 2008). First we test the 

hypothesis that all eigenvalues are equal to 0, next that they all are apart from 

the first, etc. This procedure is continued until the first time the hypothesis is 

not rejected. Then we state that from this value the remaining (n-s) eigenvalues 

are equal to 0. As the test statistic we apply Wilks’ lambda of the form 

∏ += +
= s

di
i

d 11

1

λ
Λ   where d = 0, 1, …, p-1, 

which has asymptotic χ2 distribution (more in Krzyśko, 1990, Koronacki and 

Ćwik, 2005, Krzyśko at al., 2008). Its values are shown in Table 1. To evaluate 

the prior variable we use the partial Wilks’ lambda associated with the unique 

contribution of the respective variable to the discriminatory power of the model.  

When we use the linear classifier (in LDA) then we assign observations to 

the class k having the smallest value of the function  

∑ = −′= s
i kik xxaxd 1

2)]([)(ˆ  for k = 1, 2, ...,K 

where kx is the vector of means for the k-th class. (Krzyśko et al., 2008). 

4. First results 

At first, we include all variables and all cases in the model (see Table 1). Wilks’ 

statistic called lambda is based on the clustering of points in p-dimensional 

space around the centroid. Its value is in [0,1] and 0 denotes the best power of 
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discrimination. The partial lambda measures the influence of the variable on 

discrimination and is equal to the lambda statistic for all variables over the 

lambda statistic for all but the one variable.  
 

Table 1. Choice of variables for discriminant functions (good candidates in bold) 

Var. 
Wilks’ 
Lambda 

Partial 
Lambda 

Standardized 
coefficients for 

u1 

Standardized 
coefficients for u2 p-level R2 

W 0.092 0.893 -1,07755 -1,17180 0.00087 0.938 
h  0.094 0.874 0,71741 -2,08813 0.00016 0.989 
Zh5   0.085 0.964 0,39139 -0,12656 0.24656 0.844 
 K  0.085 0.970 0,04208 0,12650 0.35264 0.810 
d1⋅3 0.091 0.898 0,37484 4,17564 0.00143 0.998 
Zd5 0.097 0.849 -0,08578 3,31982 0.00001 0.970 
g1.3 0.090 0.912 1,53303 2,04069 0.00475 0.998 
Zg5  0.092 0.892 -0,09533 -4,07365 0.00084 0.986 
V 0.091 0.902 -0,09533 -3,02553 0.00205 0.994 
Zv5 0.096 0.853 -0,77727 3,20533 0.00002 0.972 
f1.3 0.090 0.915 0,06057 0,53291 0.00590 0.714 
i5 0.108 0.761 0,99521 -2,65707 0.00000 0.945 
s  0.101 0.815 -0,77326 1,97743 0.00000 0.939 
 

According to Krzyśko i in. (2008) we should build our model on the basis of 

all variables significant at the level 0.01 level (w, h, d1⋅3 , Zd5, g1.3, Zg5, V, Zv5, 

f1.3, i5, s) which contributes most (have largest absolute value of coefficients) in 

the first discriminant function (w, h, Zh5, d1⋅3 , g1.3, Zv5, i5, s) or in the second 

one (h, d1⋅3, Zd5, Zg5, V, Zv5, i5). Obviously, it is not possible to take all three 

variables i5, Zv5, g1.3, or all three of s5, h, d1,3, or all four of f1.3, V, g1.3, h in the 

same model because of the definitions of the quantities.  

The quantity R2 measures how much the variance of the grouping variable is 

explained by the variables in the model. Although the adding a new variable to 

the model makes R2 bigger, one should check if the new variable is redundant, 

i.e. duplicates the influence of another one in the model.  
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5. The choice of variables  

We are interested in making the shortest list of variables included in the model 

but with a great discriminatory power. Unfortunately, there are a lot of models 

satisfying the above conditions. In order to find the best of them the PCA 

method will be applied (see Jolliffe, 1982). We find the lines called factor axes 

generated by a set of orthogonal eigenvectors of the covariance matrix W 

(Table 2). Only the three largest eigenvalues are related (jointly) to the great 

part of the total variation, so the projections of 13 variables on two-factor planes 

(1x2) and (2x3) will show the importance and relations between them.  
 

Table 2. The largest eigenvalues of the data covariance matrix and the percentage 
of total variance explained 

Eigenvalue 7.51 3.12 1.06 0.54 0.25 0.19 
% 57.76 24.02 8.18 4.15 1.95 1.46 

 

Figure 2 presents 13 variables as the end points of eigenvectors projected on 

to the two-factor plane. With the exception of f1.3 and K the remaining variables 

are highly correlated with the factor axes, because they are located almost on 

the unit circle. The uncorrelated pairs of variables are presented as the 

orthogonal pairs of vectors. The points Zh5, s, w and Zv5 (or Zg5) lie on the 

vertices of a square (see Figure 2). Variables located on the same diameter of 

the circle are negatively correlated with the value –1 and both should not be 

entered in the same model. We get two models: (s, w) and (Zh5, Zg5, w) which 

are seemed to be adequate to the data. Additionally f1.3 is ortogonal to the 

remain variables on (2x3)-plane in Figure 3, so f1.3 and i5, (lying orthogonally to 

f13.) ought to be included in our model. The projection on the (1x3)-plane looks 

similarly to Figure 2, so is not presented here.  

Let us consider two models: (s, w, f1.3, i5) and (Zh5, Zg5, w, , f1.3 , i5 ). The 

eigenvalues of the first model are equal (approximately) to 3.162, 0.067, 0.026 
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Figure. 2. Projection of the variables on the two-factor plane (1x2) 
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Figure 3. Projection of the variables on the two-factor plane (2x3) 
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and lower, so it is appropriate to take one discriminant function because very 

small eigenvalues have a negligible influence on the grouping variable. To go 

into detail the χ2 test rejected the second and subsequent functions as not 

significant at the level 0.01 (Table 3). The first discriminant function is good 

enough because of Wilks’ lambda value. The second model has two 

discriminant functions significant at the level 0.01 (see Table 4).  
 

Table 3. Characteristics of discriminant functions in the model (s,w, f1.3,i5) 

Discriminant 
function 

Eigenvalue 
Wilks’ 
lambda χ2 

Degrees of 
freedom 

p-level 

1 3.162* 0.218 295.31 20 0.000 
2 0.067 0.908 18.65 12 0.097 
3 0.026 0.970 6.00 6 0.615 

 *-significant at 0.01 
  

Table 4. Characteristics of discriminant functions in model  
(Zh5, Zg5, w, , f1.3 , i5 ) 

Discriminant 
function 

Eigenvalue 
Wilks’ 
lambda χ2 

Degrees of 
freedom 

p-level 

1 1.876* 0.250 268.55 25 0.000 
2 0.347* 0.718 64.16 16 0.000 
3 0.028   0.967 6.45 9 0.694 

 *-significant at 0.01 
 

In the first model the only one discriminant function  

u1 = 0.170196 ⋅ w + 0.732688 ⋅ i5 + 0.056777 ⋅ f1.3 +1.063779 ⋅s 

explains 97% of total variation (see the last row in Table 5). The variable s has 

the greatest influence on discriminant function u1 because of the obtained 

absolute value of standardized coefficients.  

In the second model discriminant functions 

u1 = 0.442695⋅w + 0.274062⋅i5 + 0.022642⋅f1.3 + 0.758828⋅Zh5 + 0.865548⋅Zg5 

u2 = 2.19449⋅w + 1.16317⋅i5 - 0.37051⋅f1.3 + 0.90217⋅Zh5 - 1.04235⋅Zg5 

explain 83% and 15% of the total variation, respectively. The variables Zg5 has 

the greatest influence on discriminant function u1, and the variable w on u2.  
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Table 5. Standardized coefficients of canonical variables  

 (s,w, f1.3,i5)  (Zh5, Zg5, w, f1.3 , i5 )  
Variable U1 u1 u2  
W 0.170196 0.442695 2.19449 
I5 0.732688 0.274062 1.16317 
 f1.3 0.056777 0.022642 -0.37051 
S 1.063779 - - 
Zh5 - 0.758828 0.90217 
Zg5 - 0.865548 -1.04235 
Eigenvalue 3.162347 1.875704 0.34747 
Cum. Prop. 0.969751 0.831097 0.98506 

 

Obviously there are observations far from the centroid of its Kraft’s group, 

and so the classification cannot be done easily. This is implied by the fact that 

some trees can change their class during their life, if for example the dominating 

trees close to them die are dead or are felled. Because of this (as one can see in 

Figure 4) the transition from observations in a certain class to the next class is 

continuous along a straight line parallel to the u1 axis. This means that there is 

no important difference between the type of classifiers; linear, quadratic or 

elliptical discriminant functions will give the similar result. Therefore only 

linear discriminant functions are considered.  

In Figure 4 groups are placed along a straight line, because the second 

discriminant function is negligible. In the second model, the groups in Figure 5 

lie along a parabolic line. This means that the first discriminant function orders 

the means for groups exactly according to their names whereas the second 

distinguish the extreme groups from those in the centre, as one can see from the  

coefficients in Table 6. 

 
Table 6. Means of canonical variables for Kraft’s groups 

Kraft’s classes 
u1 in  

(s, w, f1.3,i5) 
u1 in  

(Zh5, Zg5, w, f1.3, i5 ) 
u2 in  

(Zh5, Zg5, w, f1.3, i5 ) 
1 -2.53452 2.46925 -0.63631 
2 -1.09142 0.65534 -0.01444 
3 0.20682 -0.25359 0.67153 
4a 1.66872 -1.41986 0.11239 
4b 2.78263 -1.94038 -0.34888 
5a 4.60742 -2.75888 -2.00517 
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Figure 4. Discrimination by u1 and u2 in the model (s, w, f1.3, i5) 
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 Figure 5. Discrimination by u1 and u2 in model (Zh5, Zg5, w, f1.3 , i5 ) 

6. Results of classification 

As we do not have a test sample (additional data) independent from the learning 

sample (the basis for constructing the discriminant functions) the cross-

validation procedure will be performed to verify which of the two models is 

better. Let us divide the sample into two parts of 100 cases. 50% of every 

Kraft’s class data will create the learning sample to estimate parameters of 
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a model and the remains will be classified according to that model. This 

division was simulated 50 times at random. A priori classification probabilities 

are proportional to group sizes and equal to 0.125, 0.35, 0.255, 0.16, 0.07 and 

0.04, respectively. The effects of simulations are presented in Tables 7 and 8.  
 

Table 7. Average percentage of correct classification in the model (s, w, f1.3, i5) 

Kraft’s 
class 

Classified  
as 1 

Classified  
as 2 

Classified  
as 3 

Classified  
as 4a 

Classified  
as 4b 

Classified  
as 5a 

1 48.33 19.14 0.00 0.00 0.00 0.00 
2 18.33 75.43 20.60 4.29 5.94 0.00 
3 0.42 26.43 52.00 7.14 16.88 0.00 
4a 0.00 1.86 26.00 20.71 41.88 14.00 
4b 0.00 0.00 0.20 27.86 28.75 8.00 
5a 0.00 0.00 0.00 16.43 0.31 56.00 

        
Table 8. Average percentage of correct classification in the  model  

(Zh5, Zg5, w, f1.3 , i5 )  

Kraft’s 
class 

Classified  
as 1 

Classified  
as 2 

Classified  
as 3 

Classified  
as 4a 

Classified  
as 4b 

Classified  
as 5a 

1 55.42 15.71 1.40 0.00 0.00 0.00 
2 35.42 60.29 27.80 5.00 14.69 0.00 
3 0.00 19.14 60.0 12.14 17.50 3.00 
4a 0.00 2.00 22.80 15.71 45.94 23.00 
4b 0.00 0.00 4.60 25.00 19.38 20.00 
5a 0.00 0.00 0.00 10.00 4.38 52.00 

 

The model (s, w, f1.3, i5) is slightly better than the model (Zh5, Zg5, w, f1.3, i5). 

Neither is good enough to distinguish classes 4a and 4b classes, because there 

are significantly less observations in 4b than in 4a. Although the size of the last 

(5a) is 10 (the least), this group is identifiable with the use to identify with the 

help of both models.  

7. Conclusions 

The percentage of dominating trees in the stand gives us the important 

information about the productivity of that stand. Obviously the social position 

of a tree in the stand may naturally change over time, more frequently in 
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younger stands than in older ones. The discriminant functions given in this 

paper allow us to provide Kraft’s classification continuously in time and choose 

the best moment for removing trees. Although it happens that we assing a tree 

to a group in the neighbourhood of the proper one, it is relatively rare that  we 

misclassify in a group, lying far from the true group.  

The considered models are equivalent in the sense that s measures the ratio of 

height to breast height diameter at a certain moment in time, whereas Zh5 and 

Zg5 measure 5-year increment in height and 5-year basal area increment. 

Knowing the four values (of w, f1.3, i5 and s) for a tree we are able to assign 

it to Kraft’s classes properly with a probability at least 50% if we treat classes 

4a and 4b as one we get 60.8% in the first model and 69.9% in the second one. 

It can be done by calculating the value of the function u1 in model (s, w, f1.3, i5). 

The results of classification using the model (Zh5, Zg5, w, f1.3, i5) are slightly 

worse in the sense that we estimate one parameter more and classify cases using 

two discriminant functions, but the results are similar.  

Though grouped according to just a very simple criterion )(ˆ xdk  trees within 

the same Kraft’s class prove to be quite homogenous (as far as many dendro-

metrical features are concerned), while there was significant variation between 

the classes. Each Kraft’s class groups trees with similar growth potential.  
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